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Abstract

Nowadays, churn prediction models in non-contractual settings are gaining

increasing interest. In a non-contractual setting the exact moment of cus-

tomers dropout is unknown. The popular approach to identify active cus-

tomers is to fit parametric probability model and then infer the probability

of being alive from the model and customer’s datum. This approach is em-

ployed in extension to NBD model (Donald G. Morrison 1988), Pareto/NDB

model (David C. Schmittlein 1987) or BG/NBD model (Fader et al. 2005).

But despite the respect these models were earned, they can’t utilize time-

dependent covariates apart from recency and frequency. However, in real-life

settings, many other time-dependent covariates are available, for example

seasonality or scheduled promotional events. We developed the extension of

BG/NBD model which is able to utilize any kind of covariates, including

time-dependent variables and monetary values from transactions. Proposed

model demonstrated improvements of churn prediction in comparison with

BG/NBD model on a real dataset.
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Introduction1

In general, there are 2 main approaches to non-contractual churn problem:2

Probability models and Data Mining models.3

Probability models use parametric distributions to model customers be-4

havior and find optimal parameters through maximum likelihood approach.5

This approach is based on articles (Ehrenberg 1959) and (David C. Schmit-6

tlein 1987) and developed further in (Fader et al. 2005) and (Fader and7

Hardie 2009). These authors developed Pareto/NDB and BG/NBD models8

that predict future customers behavior as well as probability of being alive9

from past historical transaction data. However, the main drawback of these10

models is that only recency and frequency data and time-invariant covari-11

ates (Fader and Hardie 2007) could be utilized for prediction purposes. This12

restriction limits the range of predictors that are available in real business13

settings, for example calendar information could not be used.14

In contrast, Data Mining approach is based on applying supervised classi-15

fication techniques to find probability of churn conditional on past historical16

transaction data. This approach was developed and reviewed by many au-17

thors, for example (Coussement and den Poel 2009), (Jahromi et al. 2010),18

(Bock and den Poel 2011), (Yu et al. 2011). The comparison of various meth-19

ods, including Pareto/NBD (probabilistic approach) and several machine20

learning methods (Data Mining approach) in terms of dropout prediction21

is provided in (Tamaddoni et al. 2016). The advantage of Data Mining ap-22
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proach is that all available covariates could be utilized for improving churn23

prediction. However, supervised classification requires target (the fact of24

customer’s attrition) to be available. This is problematic in non-contractual25

settings as there is no dropout indicator. Instead, data mining approach uses26

empirically defined targets, for example unusually long transaction vacancy27

of other judgemental target. Unsupervised methods, for example cluster-28

ing, were employed in (Jahromi et al. 2010) to define targets for supervised29

classification. However, the question about relation of obtained clusters and30

customers who are going to drop out is open.31

Our approach synthesizes probability and data mining approaches, that32

allows to benefit from their advantages and overcome disadvantages. The33

main idea is to build probabilistic model that includes probability of churn34

conditional on the past history, then build the sequence of supervised classi-35

fication tasks that converges to the maximum likelihood of the model.36

Problem definition37

We follow the definition of the problem as in (Fader et al. 2005):38

1. Customer is observed from the beginning of his history.39

2. Customer’s transactions are traced until the end of period [0,T].40

3. The exact moment of churn isn’t known.41

4. The cohort consists of customers who joined the study during some42

subset of the observed period (for example in the first 3 months of the43

period).44

The goal is to determine the probability that customer remains active after45

the end of observations T from his transaction history. Apart from that con-46
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ditions, transaction time is defined on daily level only. Therefore, we assume47

that customer makes no more than 1 transaction per day. If there are several48

transactions during 1 day, we simply aggregate customer’s transactions on49

daily level by summing monetary values and the number of items. Obviously,50

for different business settings daily granularity could be replaced to hourly51

granularity ans so on in dependence of available data.52

Modelling approach53

In this section we will define modelling approach and assumptions that are54

necessary for the derivation of likelihood and, consequently, for estimation of55

model parameters. Apart from that, we will highlight aspects of our approach56

that are different from original BG/NBD model. Our assumptions are very57

similar to BG/NBD model (Fader et al. 2005), except for that probability of58

dropout at the end of every transaction is conditioned on the past history and59

time-dependent covariates that are available by the end of the transaction:60

1. As in (Fader et al. 2005): The time between transactions is distributed61

exponential with transaction rate λ.62

2. As in (Fader et al. 2005): Heterogeneity in transaction rates across

customers follows a gamma distribution with shape parameter r and

scale parameter α:

f(λ | α, r) =
αrλr−1e−λα

Γ(r)
, λ > 0 (1)

3. After transaction as the moment ti,j, a customer becomes inactive with

probability p. The probability depends on past history, time-dependent
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covariates and churn model parameters:

p(dropout | D̄i,j,Θ)

where

D̄i,j = (ti,1, . . . , ti,xi , Hi,1, . . . , Hi,xi) (2)

is the history of customer’s transactions and time-dependent covariates63

prior to the moment ti,j. The Θ is the set of dropout model’s parameters64

to be estimated.65

The assumption 3 is the key distinction from original BG/NBD model. In66

contrast with being unobservable constant for any given customer, probabil-67

ity of dropout in proposed model depends on history of past transactions and68

time-dependent covariates that are available by the end of every transaction.69

This dependence is realized via conditional probability p(dropout | D̄i,j,Θ).70

Later, we provide the method of estimation for this probability via reduction71

to the sequence of weighted classification problems.72

Derivation of the Likelihood Function on individual level73

In this section we derive the likelihood of customer’s datum with respect

to unobservable parameter λ. This likelihood is needed to derive full likeli-

hood and probability of churn. The derivation of the likelihood on customers

level is similar to (Fader et al. 2005) except for terms related to conditional

probability of dropout at the end of every transaction.

Consider a customer i who had xi transactions in the period (0, T] with the

transactions occurring at ti,1 . . . ti,xi and corresponding covariatesHi,1 . . . Hi,xi :

0 −→ (ti,1, Hi,1) −→ (ti,2, Hi,2) −→ (ti,3, Hi,3) · · · −→ (ti,xi , Hi,xi) −→ T
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1. As in (Fader et al. 2005), the likelihood of the first transaction occurring

at ti,1 is a standard exponential likelihood component, which equals

λe−λti,1

2. As in (Fader et al. 2005), the likelihood of the j-th transaction occurring

at ti,j is the probability of remaining active at ti,j−1 times the standard

exponential likelihood component, which equals

(1− pi,j−1)λe−λ(ti,j−ti,j−1)

pi,j−1 = p(dropout | D̄i,j−1,Θ)
(3)

where p(dropout | D̄i,j−1,Θ) is the probability of churn conditional on74

model parameters and history prior to ti,j−175

3. The likelihood of observing zero purchases in (ti,xi , T ] is the probability

the customer became inactive at ti,xi , plus the probability he remained

active but made no purchases in this interval, which equals

pi,xi + (1− pi,xi)e−λci

ci = T − ti,xi
(4)

Therefore customer-level likelihood is:

L(λ,Θ | D̄i) =
xi−1∏
j=1

(1− pi,j)λxie−λti,xi (pi,xi + (1− pi,xi)e−λci)

D̄i = (ti,1 . . . ti,xi , ci, Hi,1 . . . Hi,xi)

(5)

where D̄i is the data available for customer i, including both history and76

the ci period from last transaction to the end of observations. The main77

difference between D̄i and D̄i,j is that the latest term includes only history78

and covariates that are available prior to ti,j, whereas D̄i includes all the79
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information for customer i, including the distance from the last transaction80

to the end of observations.81

Hereinafter,for simplicity, we denote Li(λ,Θ) = L(λ,Θ | D̄i)82

Sample likelihood83

In this section we derive expectation of customer’s likelihood over unob-

servable parameter λ. This expectation is needed for parameter estimation

as well as for the probability of churn. We derive likelihood with prior from

equation (1) as the expectation of Li(λ,Θ) over λ with respect to (1):

L(α, r,Θ | D̄i) =

∞∫
0

Li(λ,Θ)
αrλr−1e−λα

Γ(r)
dλ (6)

Substitution of (5) into (6) yields:

L(α, r,Θ | D̄i) = a(α, r, D̄i)

(
xi−1∏
j=1

(1− pi,j)
)

(pi,xi ∗ b(α, r, D̄i) + (1− pi,xi))

a(α, r, D̄i) = αr
Γ(xi + r)

Γ(r)

(
ti,xi + α + ci

)−(xi+r)

b(α, r, D̄i) =

(
1 +

ci
ti,xi + α

)−(xi+r)

(7)

where xi is the number of transactions of customer i within the observed

period and the pi,j is defined in equation (3).The details about derivation of

(7) could be found in Appendix A.

Hereinafter,for simplicity, we denote

Li(α, r,Θ) = L(α, r,Θ | D̄i)

ai(α, r) = a(α, r, D̄i)

bi(α, r) = b(α, r, D̄i)

(8)
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Therefore, individual log likelihood is:

logLi(α, r,Θ) = log ai(α, r)+
( xi−1∑
j=1

log (1− pi,j)
)
+log (pi,xi ∗ bi(α, r) + (1− pi,xi))

(9)

Full log likelihood of the given sample is:

LL(α, r,Θ) =
N∑
i=1

logLi(α, r,Θ)

Probability of churn84

In this section we derive the key result of the model which is the proba-

bility of churn for given customer after the end of observed period. The way

of deriving the formula is similar to (Fader and Hardie 2008). Lets denote I

as indicator of the churn event. Therefore, from the Bayes rule:

P (I = 1 | α, r,Θ, D̄i) =
P (I = 1, D̄i | α, r,Θ)

P (D̄i | α, r,Θ)
(10)

Equation (7) and the definition of likelihood lead to:

P (D̄i | α, r,Θ) = a(α, r, D̄i)

(
xi−1∏
j=1

(1− pi,j)
)

(pi,xi ∗ b(α, r, D̄i) + (1− pi,xi))

P (I = 1, D̄i | α, r,Θ) = a(α, r, D̄i)

(
xi−1∏
j=1

(1− pi,j)
)
pi,xib(α, r, D̄i)

(11)

Therefore, probability of churn for given customer after the end of observed

period is:

P (I = 1 | α, r,Θ, D̄i) =
pi,xib(α, r, D̄i)

pi,xi ∗ b(α, r, D̄i) + (1− pi,xi)
(12)
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Parameter estimation via sequence of binary classifiers85

In this section we describe the method of estimation of model’s param-86

eters. From equation (7) it follows that the model’s likelihood depends on87

parameters α, r,Θ. Estimation of α, r is could be done by any known method88

of optimization. However,the estimation of Θ via direct application of opti-89

mization methods could be done by only under assumptions about parametric90

form of p(dropout | D̄i,j,Θ).91

Here we propose different approach, that is free from such assumptions and92

allows to utilize non-parametric forms of p(dropout | D̄i,j,Θ). First, we93

use Minimization-Minimization method to derive special function, so called94

“surrogate function” such as it’s extreme converges to log likelihood’s ex-95

treme and then infer the solution of “surrogate” optimization problem as a96

sequence of binary classifiers. This way gives ability to plug in almost any97

method of binary classification as a solution for this sequence, therefore we98

aren’t restricted to the particular form of p(dropout | D̄i,j,Θ).99

Minimization-Minimization algorithm100

In this section we briefly describe Minimization-Minimization method

and the resulting algorithm. Details about the method could be found in

(Hunter and Lange 2004) as well as in many other sources. The main idea is

to build boundary function (so-called “surrogate function”) which is less or

equal than log likelihood and then, iteratively, build the sequence of param-

eters such as the maximum of surrogate function converges to the maximum

of log likelihood. It turns out, that we can represent our particular opti-

mization problem of our specific surrogate function as the weighted binary
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classification problem. Therefore, solution could be obtained via sequence of

binary classifiers.

According to (Hunter and Lange 2004), we construct surrogate function

Q(Θ, Θ̃, α, r) such as:

logLL(α, r,Θ) = Q(Θ,Θ, α, r)

logLL(α, r,Θ) ≥ Q(Θ, Θ̃, α, r)
(13)

for any Θ and Θ̃.101

Then, we consequently maximize function Q(Θ, Θ̃, α, r) over the first argu-102

ment and substituting the result to the second argument until convergence.103

Then, parameters α and r are found over standard optimization procedure,104

then we repeat the whole procedure again until convergence:

Algorithm 1 MM algorithm
1: repeat

2: repeat

3: Θ := arg max
Θ

Q(Θ, Θ̃, α, r)

4: Θ̃ := Θ

5: until Convergence

6: (α, r) := arg max
α,r

Q(Θ,Θ, α, r)

7: until Convergence

105

Surrogate function106

In this section we derive surrogate function which is necessary for opti-

mization via MM algorithm. We build surrogate function Qi(Θ, Θ̃, α, r) on
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individual level, then obtain sample surrogate function as a sum:

Q(Θ, Θ̃, α, r) =
N∑
i=1

Qi(Θ, Θ̃, α, r) (14)

To construct customers surrogate function we apply Jensen inequality to107

equation (9):108

Qi(Θ, Θ̃, α, r) = Si(Θ, Θ̃, α, r) + ηi(Θ̃, α, r)

Si(Θ, Θ̃, α, r) =

(
xi−1∑
j=1

log (1− pi,j)
)

+ (1− µi(Θ̃, α, r)) log (1− pi,xi) + µi(Θ̃, α, r) log pi,xi

(15)

where

µi(Θ̃, α, r) =
p̃i,xibi(α, r)

p̃i,xibi + (1− p̃i,xi)
(16)

ηi(Θ̃, α, r) = log (p̃i,xibi(α, r) + (1− p̃i,xi))−

−
(

(1− µi(Θ̃, α, r)) log (1− p̃i,xi) + µi(Θ̃, α, r) log p̃i,xi

)
+

+ log ai(α, r)

(17)

p̃i,j = p(dropout | D̄i,j, Θ̃)

pi,j = p(dropout | D̄i,j,Θ)
(18)

Proof of that function satisfies conditions (13) could be found in Appendix109

B.110

The term Si(Θ, Θ̃, α, r) is the only component ofQi(Θ, Θ̃, α, r) which depends111

on Θ, therefore optimization of
N∑
i=1

Qi(Θ, Θ̃, α, r) by Θ is reduced to the112

optimization of
N∑
i=1

Si(Θ, Θ̃, α, r).113
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Optimization of surrogate function via fitting binary classifier114

In this section will reduce the problem of optimization of (15) by Θ to

well-studied problem of fitting binary classifier. We will construct binary

classification problem in a way that −Si(Θ, Θ̃, α, r) from equation (15) is

equal to weighted cross-entropy loss function. Therefore, the solution of

this classification problem will deliver the solution of surrogate optimization

problem.

Binary classification problem is:

Θ = arg max
Θ

N∑
i=1

xi∑
j=1

(w1
i,jYi,j log p(Y = 1 | D̄i,j,Θ) + w0

i,j(1− Yi,j) log (1− p(Y = 1 | D̄i,j,Θ)))

(19)

where Yi,j are target variables, w1
i,j and w0

i,j are weights:

Yi,j =

1, if j = xi

0, if 1 ≤ j < xi

w1
i,j =

µi(Θ̃, α, r), if j = xi

0, if 1 ≤ j < xi

w0
i,j =

1− µi(Θ̃, α, r), if j = xi

1, if 1 ≤ j < xi

(20)

Substitution of (20) into (19) yields
N∑
i=1

Si(Θ, Θ̃, α, r), where Si(Θ, Θ̃, α, r) is115

from (15). Therefore, optimizing Q(Θ, Θ̃, α, r) is the same as fitting binary116

classifier.117

Any type of binary classifier p(Y = 1 | D̄i,j,Θ) with weighted cross-entropy118

loss could be plugged into (19) to get the solution of the problem. For exam-119
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ple, it’s possible to plug in logistic regression as well as tree-based methods,120

such as simple decision tree or ensemble of trees. In the next section we will121

demonstrate performance of the model then binary classifier is in the form122

of gradient-boosted trees.123

Empirical validation124

To validate performance of the model, we compared performance of churn125

prediction of original BG/NBD model and our model. We use transactional126

data from online retailer CDNOW. The dataset represents cohort of cus-127

tomers who made their first online purchase at CDNOW site from January to128

March 1997. The observed period is from 1997-01-01 to 1998-06-30. Dataset129

includes 69659 transactions of 23570 customers. Further details about the130

dataset could be found in (Fader and Hardie 2001). Before supplying dataset131

to the model, we aggregated purchases on the day/customer level since both132

models have minimum time frequency of 1 day. After aggregation the number133

of transactions reduced to 67591. To validate performance of both models,134

we compared ability to predict absence of transactions on validation period135

from the data in calibration period. We build 6 pairs of calibration-validation136

periods by splitting overall period into 2, as in Table 1.137
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Calibration start Calibration end Validation end Days

1 1997-01-01 1997-10-01 1998-06-30 273 / 272

2 1997-01-01 1997-11-12 1998-06-30 315 / 230

3 1997-01-01 1997-12-24 1998-06-30 357 / 188

4 1997-01-01 1998-02-04 1998-06-30 399 / 146

5 1997-01-01 1998-03-18 1998-06-30 441 / 104

6 1997-01-01 1998-04-29 1998-06-30 483 / 62

Table 1: Calibration/validation periods

On every pair we fit both models on calibration period only, calculated138

churn prediction by the end of calibration period and then measured area139

under ROC curve (AUC) metric of this prediction against the actual ab-140

sence/presence of customer’s transactions on validation period. The data141

from validation periods was not used during fitting on both models. This142

fact highlights distinction of the models from usual supervised methods. To143

fit GB/NDB model and calculate probability of churn (as 1 − p(alive)) we144

used R package BTYD 2.4 (R version 3.3.2). To fit our model we used145

our implementation of (Algorithm 1). The binary classifier in step 3 in this146

algorithm was implemented via gradient boosting classifier with weighted147

cross-entropy loss function. For these purposes we used R package xgboost148

version 0.4-4. For binary classifier, we utilized time-dependent covariates for149

every transaction from the data available for the customer from the period150

prior to transaction. Covariates are provided in Table 2151
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Covariate Description

bynow avgd Average period between transactions for given customer until the current transaction

bynow maxd Maximum period between transactions for given customer until the current transaction

bynow mind Minimum period between transactions for given customer until the current transaction

bynow avgsales Average monetary value for given customer until the current transaction

bynow minsales Minimum monetary value for given customer until the current transaction

bynow maxsales Maximum monetary value for given customer until the current transaction

bynow trans Number of transactions for given customer until the current transaction

bynow tenure Days from the start of the period to the current transaction

dow Transaction’s day of week (from 1 to 7)

month Transaction’s month (from 1 to 12)

sales Transaction’s monetary value

Table 2: Covariates

To estimate confidence intervals for AUC we used percentile bootstrap152

intervals. The bootstrap procedure was performed as follows: For every pair153

of calibration/validation periods we draw 100 samples with repetition from154

the set of all customers and then performed model fitting and ACU calcula-155

tion on the subset which belonged to these customers only.156

157
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Figure 1: Bootstrap estimations of AUC. Dashed line represents our model, dotted line

represents BG/NBD model, bars represent 95% percentile confidence intervals.

The numeric values are provided in the Table 3.158
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Proposed model BG/NBD model

Pair 95% CI AUC 95% CI AUC

1 0.7493947 0.7666556 0.7655838 0.6898807 0.7147571 0.6999925

2 0.7652551 0.7833171 0.7814463 0.6960283 0.7214137 0.7102302

3 0.7777401 0.7935890 0.7966108 0.6927215 0.7166668 0.7057671

4 0.7907538 0.8077121 0.8042113 0.7021700 0.7233010 0.7134805

5 0.8061596 0.8247394 0.8193231 0.7215339 0.7428352 0.7319606

6 0.8180095 0.8366947 0.8355411 0.7298490 0.7546552 0.7429705

Table 3: Calibration/validation periods

Our model consistently outperforms BG/NBD model in terms of AUC159

metric for churn prediction on every pair. For comparison, Figure 2 shows160

ROC plot for both models for first calibration/validation pair (separation on161

1997-10-01).162
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Figure 2: ROC curves. Solid line represents our model, dashed line represents BG/NBD

model.

Figures 3 , 4 , 5 demonstrate the shape of log likelihood function where163

parameter Θ is fixed at the optimal value.164
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Figure 3: Level curves for the sample log likelihood. Horizontal axis corresponds to α,

vertical to r. Black dot is at the optimal point.
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Figure 4: Log likelihood against α while r is fixed at optimal point.

20



Figure 5: Log likelihood against r while α is fixed at optimal point.

Conclusion165

In this article we presented an extension of BG/NBD model which allows166

to incorporate any kind of covariates, including time-dependent, as predictors167

for the probability of dropout. To do so, we employed novel approach which168

allows to reduce unsupervised problem to the converging sequence of super-169

vised classification problems. To empirically estimate the predictive power170

of the model, we have compared churn prediction metrics from proposed and171

BG/NBD model and found that proposed model systematically outperforms172

original model.173
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Appendix A. Expectation of individual likelihood174

Substitution of (5) into (6) yields:

L(α, r,Θ | D̄i) =

αr

Γ(r)

(
xi−1∏
j=1

(1− pi,j)
) ∞∫

0

λxi+r−1e−λ(ti,xi+α)(pi,xi + (1− pi,xi)e−λci) dλ

(A.1)

This integral could be expressed via gamma function, therefore:

L(α, r,Θ | D̄i) =

=
αr

Γ(r)

(
xi−1∏
j=1

(1− pi,j)
)(

pi,xi
Γ(xi + r)

(ti,xi + α)xi+r
+ (1− pi,xi)

Γ(xi + r)

(ti,xi + ci + α)xi+r

)
=

= αr
Γ(xi + r)

Γ(r)
(ti,xi + ci + α)−(xi+r)

(
xi−1∏
j=1

(1− pi,j)
)(

pi,xi
(
1 +

ci
ti,xi + α

)xi+r + (1− pi,xi)
)

(A.2)

This this equation immediately yields to (7).175

Appendix B. The proof of conditions (13)176

Equation (15) yields:

Qi(Θ, Θ̃, α, r) =

=

(
xi−1∑
j=1

log (1− pi,j)
)

+ (1− µi(Θ̃, α, r)) log (1− pi,xi) + µi(Θ̃, α, r) log pi,xi + ηi(Θ̃, α, r) =

= log ai(α, r) +

(
xi−1∑
j=1

log (1− pi,j)
)

+ log (p̃i,xibi(α, r) + (1− p̃i,xi))+

+
p̃i,xibi(α, r)

p̃i,xibi(α, r) + (1− p̃i,xi)
log

pi,xi
p̃i,xi

+
1− p̃i,xi

p̃i,xibi(α, r) + (1− p̃i,xi)
log

1− pi,xi
1− p̃i,xi

(B.1)

22



Applying Jensen inequality to the last 2 terms yields:

p̃i,xibi(α, r)

p̃i,xibi(α, r) + (1− p̃i,xi)
log

pi,xi
p̃i,xi

+
1− p̃i,xi

p̃i,xibi(α, r) + (1− p̃i,xi)
log

1− pi,xi
1− p̃i,xi

≤

≤ log

(
p̃i,xibi(α, r)

p̃i,xibi(α, r) + (1− p̃i,xi)
pi,xi
p̃i,xi

+
1− p̃i,xi

p̃i,xibi(α, r) + (1− p̃i,xi)
1− pi,xi
1− p̃i,xi

)
=

= log (pi,xibi(α, r) + (1− pi,xi))− log (p̃i,xibi(α, r) + (1− p̃i,xi))
(B.2)

Substitution of (B.2) into (B.1) immediately yields to (13)177
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